|
virtual void | computeStress (double *stress, double *dStress_dFNew, const double *FOld, const double *FNew, const double *timeOld, const double dT, double &pNewDT)=0 |
|
virtual void | computePlaneStress (double *stress2D, double *dStress_dF2DNew, const double *FOld2D, const double *FNew2D, const double *timeOld, const double dT, double &pNewDT) |
|
virtual void | computeUniaxialStress (double *stress1D, double *dStress1D_dF1DNew, const double *F1DOld, const double *F1DNew, const double *timeOld, const double dT, double &pNewDT) |
|
| MarmotMaterial (const double *materialProperties, int nMaterialProperties, int materialNumber) |
|
| MarmotMaterial (const double *materialProperties, int nMaterialProperties, int materialNumber) |
|
virtual | ~MarmotMaterial () |
|
virtual int | getNumberOfRequiredStateVars ()=0 |
|
virtual void | assignStateVars (double *stateVars, int nStateVars) |
|
virtual StateView | getStateView (const std::string &stateName)=0 |
|
double * | getAssignedStateVars () |
|
int | getNumberOfAssignedStateVars () |
|
virtual void | initializeYourself () |
|
virtual double | getDensity () |
|
Abstract basic class for Mechanical materials. 'Mechanical' is meant in the 'most general sense', i.e., any material which describes a mechanical (cauchy) stress - deformation relationship (e.g, hyperelastic, hypoelastic, elasto-plastic, visco-elastic materials)
σ = f (σ, dxdX, t, .. ),
formulated incrementally as σ_np = f (σ_n, dxdX_n, dxdX_np, Δt, t_n, .. )
Algorithmic tangent: dσdF = d σ_np d (dxdX_np)
Format:
/ d σ_11 d F_00, d σ_11 d F_10, d σ_11 d F_20, d σ_11 d F_01, \ | d σ_22 d F_00, | | d σ_33 d F_00, | | ... | | ... | \ ... /
such that it can be interpreted as a column major 6x3x3 tensor (4th order, left voigt tensor)