|
virtual void | computeStress (double *S, double *dSdE, const double *FOld, const double *FNew, const double *timeOld, const double dT, double &pNewDT) override |
|
virtual void | computeStressPK2 (double *S, double *dSdE, const double *E, const double *timeOld, const double dT, double &pNewDT)=0 |
|
virtual void | computePlaneStressPK2 (double *S2D, double *dSdE2D, const double *E2D, const double *timeOld, const double dT, double &pNewDT) |
|
virtual void | computeUniaxialStressPK2 (double *S1D, double *dSdE1D, const double *E1D, const double *timeOld, const double dT, double &pNewDT) |
|
virtual void | computePlaneStress (double *stress2D, double *dStress_dF2DNew, const double *FOld2D, const double *FNew2D, const double *timeOld, const double dT, double &pNewDT) |
|
virtual void | computeUniaxialStress (double *stress1D, double *dStress1D_dF1DNew, const double *F1DOld, const double *F1DNew, const double *timeOld, const double dT, double &pNewDT) |
|
| MarmotMaterial (const double *materialProperties, int nMaterialProperties, int materialNumber) |
|
| MarmotMaterial (const double *materialProperties, int nMaterialProperties, int materialNumber) |
|
virtual | ~MarmotMaterial () |
|
virtual int | getNumberOfRequiredStateVars ()=0 |
|
virtual void | assignStateVars (double *stateVars, int nStateVars) |
|
virtual StateView | getStateView (const std::string &stateName)=0 |
|
double * | getAssignedStateVars () |
|
int | getNumberOfAssignedStateVars () |
|
virtual void | initializeYourself () |
|
virtual double | getDensity () |
|
Derived abstract base class for simple, purely hyperelastic materials to be used for finite elements based on the total lagrangian kinematic description (TL elements). The second Piola - Kirchhoff stress tensor \( S \) will be derived by
\[ \displaystyle S = \frac{\partial f(\boldsymbol{E},t )}{\partial \boldsymbol{E}} \]
with the Green - Lagrange strain tensor \( \boldsymbol{E} \)
\[ \displaystyle E = \frac{1}{2}\,\left(\boldsymbol{F}^T\cdot \boldsymbol{F} - \boldsymbol{I} \right) \]
as work conjugated measure and the variable \( \boldsymbol{F} \) denoting the deformation gradient. The algorithmic tangent will be calculated by
\[ \displaystyle \frac{d \boldsymbol{S}}{d \boldsymbol{E}} \]