Functions | |
Matrix6d | transformationMatrixStrainVoigt (const Matrix3d &transformedCoordinateSystem) |
Matrix6d | transformationMatrixStressVoigt (const Matrix3d &transformedCoordinateSystem) |
Matrix36d | projectVoigtStressToPlane (const Vector3d &normalVector) |
Matrix36d | projectVoigtStrainToPlane (const Vector3d &normalVector) |
Marmot::Vector6d | rotateVoigtStress (const Eigen::Matrix3d &Q, const Marmot::Vector6d &stress) |
Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::transformationMatrixStrainVoigt | ( | const Matrix3d & | transformedCoordinateSystem | ) |
Computes the transformation matrix \( R_{\varepsilon} \) to transform a voigt notated strain vector \( \boldsymbol{\varepsilon} \) to another cartesian coordinate system
Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::transformationMatrixStressVoigt | ( | const Matrix3d & | transformedCoordinateSystem | ) |
Computes the transformation matrix \( R_{\sigma} \) to transform a voigt notated stress vector \( \boldsymbol{\sigma} \) to another cartesian coordinate system
Matrix36d Marmot::ContinuumMechanics::VoigtNotation::Transformations::projectVoigtStressToPlane | ( | const Vector3d & | normalVector | ) |
Returns the projection matrix to calculate the stress vector \f$ \boldsymbol{t}^{(n)} \f$ effective on a plane
orientated with the normal vector \( \boldsymbol{n} \) from a voigt notated stress vector following cauchy's formula.
\[ \displaystyle t^{(n)}_i = \sigma_{ij}\,n_j \]
Matrix36d Marmot::ContinuumMechanics::VoigtNotation::Transformations::projectVoigtStrainToPlane | ( | const Vector3d & | normalVector | ) |
Returns the projection matrix to calculate the strain vector \( \boldsymbol{\varepsilon}^{(n)} \) effective on a plane orientated with the normal vector \( \boldsymbol{n} \) from a voigt notated strain vector (see projectVoigtStressToPlane())).
Marmot::Vector6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::rotateVoigtStress | ( | const Eigen::Matrix3d & | Q, |
const Marmot::Vector6d & | stress | ||
) |
Rotates a stress tensor \f$ \boldsymbol{\sigma} \f$ applying a rotation matrix \f$ \boldsymbol{Q} \f$ in voigt
notation.
\[ \displaystyle \boldsymbol{\sigma}^{\prime} = \boldsymbol{Q} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{Q}^{T} \]