Functions
Marmot::ContinuumMechanics::VoigtNotation::Transformations Namespace Reference

Functions

Matrix6d transformationMatrixStrainVoigt (const Matrix3d &transformedCoordinateSystem)
 
Matrix6d transformationMatrixStressVoigt (const Matrix3d &transformedCoordinateSystem)
 
Matrix36d projectVoigtStressToPlane (const Vector3d &normalVector)
 
Matrix36d projectVoigtStrainToPlane (const Vector3d &normalVector)
 
Marmot::Vector6d rotateVoigtStress (const Eigen::Matrix3d &Q, const Marmot::Vector6d &stress)
 

Function Documentation

◆ transformationMatrixStrainVoigt()

Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::transformationMatrixStrainVoigt ( const Matrix3d transformedCoordinateSystem)

Computes the transformation matrix \( R_{\varepsilon} \) to transform a voigt notated strain vector \( \boldsymbol{\varepsilon} \) to another cartesian coordinate system

◆ transformationMatrixStressVoigt()

Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::transformationMatrixStressVoigt ( const Matrix3d transformedCoordinateSystem)

Computes the transformation matrix \( R_{\sigma} \) to transform a voigt notated stress vector \( \boldsymbol{\sigma} \) to another cartesian coordinate system

◆ projectVoigtStressToPlane()

Matrix36d Marmot::ContinuumMechanics::VoigtNotation::Transformations::projectVoigtStressToPlane ( const Vector3d normalVector)
Returns the projection matrix to calculate the stress vector \f$ \boldsymbol{t}^{(n)} \f$ effective on a plane

orientated with the normal vector \( \boldsymbol{n} \) from a voigt notated stress vector following cauchy's formula.

\[ \displaystyle t^{(n)}_i = \sigma_{ij}\,n_j \]

◆ projectVoigtStrainToPlane()

Matrix36d Marmot::ContinuumMechanics::VoigtNotation::Transformations::projectVoigtStrainToPlane ( const Vector3d normalVector)

Returns the projection matrix to calculate the strain vector \( \boldsymbol{\varepsilon}^{(n)} \) effective on a plane orientated with the normal vector \( \boldsymbol{n} \) from a voigt notated strain vector (see projectVoigtStressToPlane())).

◆ rotateVoigtStress()

Marmot::Vector6d Marmot::ContinuumMechanics::VoigtNotation::Transformations::rotateVoigtStress ( const Eigen::Matrix3d &  Q,
const Marmot::Vector6d stress 
)
Rotates a stress tensor \f$ \boldsymbol{\sigma} \f$ applying a rotation matrix \f$ \boldsymbol{Q} \f$ in voigt

notation.

\[ \displaystyle \boldsymbol{\sigma}^{\prime} = \boldsymbol{Q} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{Q}^{T} \]