Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStressMean_dStress | ( | ) |
Computes the derivative \( \frac{d\, \sigma_m}{d\, \boldsymbol{\sigma}} \) of the mean stress \( \sigma_m \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)
Eigen::Matrix< T, 6, 1 > Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dRho_dStress | ( | T | rho, |
const Eigen::Matrix< T, 6, 1 > & | stress | ||
) |
Computes the derivative \( \frac{d\, \rho}{d\, \boldsymbol{\sigma}}\) of the haigh westergaard coordinate \( \rho \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dStress | ( | double | theta, |
const Marmot::Vector6d & | stress | ||
) |
Computes the derivative \( \frac{d\, \theta}{d\, \boldsymbol{\sigma}}\) of the haigh westergaard coordinate \( \theta \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)
double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dJ2 | ( | const Marmot::Vector6d & | stress | ) |
Computes the derivative \( \frac{d\, \theta}{d\, J_2}\) of the haigh westergaard coordinate \( \theta \) with respect to the second deviatoric invariant \( J_2 \)
double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dJ3 | ( | const Marmot::Vector6d & | stress | ) |
Computes the derivative \( \frac{d\, \theta}{d\, J_3}\) of the haigh westergaard coordinate \( \theta \) with respect to the third deviatoric invariant \( J_3 \)
double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dJ2Strain | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, J^{(\varepsilon)}_2}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the second deviatoric invariant \( J^{(\varepsilon)}_2 \).
double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dJ3Strain | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, J^{(\varepsilon)}_3}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the third deviatoric invariant \( J^{(\varepsilon)}_3 \).
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ2_dStress | ( | const Marmot::Vector6d & | stress | ) |
Computes the derivative \( \frac{d\, J_2}{d\, \boldsymbol{\sigma}}\) of the second deviatoric invariant \( J_2 \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \).
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ3_dStress | ( | const Marmot::Vector6d & | stress | ) |
Computes the derivative \( \frac{d\, J_3}{d\, \boldsymbol{\sigma}}\) of the third deviatoric invariant \( J_3 \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \).
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ2Strain_dStrain | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, J^{(\varepsilon)}_2}{d\, \boldsymbol{\sigma}}\) of the second deviatoric invariant \( J^{(\varepsilon)}_2 \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \).
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ3Strain_dStrain | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, J^{(\varepsilon)}_3}{d\, \boldsymbol{\sigma}}\) of the third deviatoric invariant \( J^{(\varepsilon)}_3 \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \).
Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dStrain | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, \boldsymbol{\varepsilon}}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)
Matrix36 Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStressPrincipals_dStress | ( | const Marmot::Vector6d & | stress | ) |
Computes the derivative \( \frac{d\, \sigma_I}{d\, \boldsymbol{\sigma}}\) of the principal stresses \( \sigma_I \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)
Vector3d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStrainVolumetricNegative_dStrainPrincipal | ( | const Marmot::Vector6d & | strain | ) |
Computes the derivative \( \frac{d\, \varepsilon^{vol}_{\ominus}}{d\, \varepsilon_I}\) of the volumetric strains in compression \( \varepsilon^{vol}_{\ominus} \) with respect to the principal strains \( \varepsilon_I \)
Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dEp_dE | ( | const Matrix6d & | CelInv, |
const Matrix6d & | Cep | ||
) |
Computes the derivative \( \frac{d\, \boldsymbol{\varepsilon}^{p}}{d\, \boldsymbol{\varepsilon}}\) of the voigt notated plastic strain vector \( \boldsymbol{\varepsilon}^{p} \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)
\[ \displaystyle \frac{d\, \boldsymbol{\varepsilon}^{p}}{d\, \boldsymbol{\varepsilon}} = \boldsymbol{I} - \mathbb{C}^{-1}\,\mathbb{C}^{(ep)} \]
using the elastic compliance tensor \( \mathbb{C}^{-1} \) and the elastoplastic stiffness tensor \( \mathbb{C}^{(ep)} \)
RowVector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dDeltaEpv_dE | ( | const Matrix6d & | CelInv, |
const Matrix6d & | Cep | ||
) |
Computes the derivative \( \frac{d\, \Delta\, \varepsilon^{p, vol}}{d\, \boldsymbol{\varepsilon}}\) of the volumetric plastic strain increment \( \Delta\, \varepsilon^{p, vol}\) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)
Matrix36 Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dSortedStrainPrincipal_dStrain | ( | const Marmot::Vector6d & | dEp | ) |
Computes the derivative \( \frac{d\, \varepsilon_I}{d\, \boldsymbol{\varepsilon}}\) of the principal strains \( \varepsilon_I \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)
RowVector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dDeltaEpvneg_dE | ( | const Marmot::Vector6d & | dEp, |
const Matrix6d & | CelInv, | ||
const Matrix6d & | Cep | ||
) |
Computes the derivative \( \frac{d\, \Delta\, \varepsilon^{p, vol}_{\ominus}}{d\, \boldsymbol{\varepsilon}}\) of the volumetric plastic strain increment in compression \( \Delta\, \varepsilon^{p, vol}_{\ominus}\) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)