Functions
Marmot::ContinuumMechanics::VoigtNotation::Derivatives Namespace Reference

Functions

Vector6d dStressMean_dStress ()
 
template<typename T >
Eigen::Matrix< T, 6, 1 > dRho_dStress (T rho, const Eigen::Matrix< T, 6, 1 > &stress)
 
Marmot::Vector6d dTheta_dStress (double theta, const Marmot::Vector6d &stress)
 
double dTheta_dJ2 (const Marmot::Vector6d &stress)
 
double dTheta_dJ3 (const Marmot::Vector6d &stress)
 
double dThetaStrain_dJ2Strain (const Marmot::Vector6d &strain)
 
double dThetaStrain_dJ3Strain (const Marmot::Vector6d &strain)
 
Marmot::Vector6d dJ2_dStress (const Marmot::Vector6d &stress)
 
Marmot::Vector6d dJ3_dStress (const Marmot::Vector6d &stress)
 
Marmot::Vector6d dJ2Strain_dStrain (const Marmot::Vector6d &strain)
 
Marmot::Vector6d dJ3Strain_dStrain (const Marmot::Vector6d &strain)
 
Marmot::Vector6d dThetaStrain_dStrain (const Marmot::Vector6d &strain)
 
Marmot::Matrix36 dStressPrincipals_dStress (const Marmot::Vector6d &stress)
 
Eigen::Vector3d dStrainVolumetricNegative_dStrainPrincipal (const Marmot::Vector6d &strain)
 
Matrix6d dEp_dE (const Matrix6d &CelInv, const Matrix6d &Cep)
 
RowVector6d dDeltaEpv_dE (const Matrix6d &CelInv, const Matrix6d &Cep)
 
Marmot::Matrix36 dSortedStrainPrincipal_dStrain (const Marmot::Vector6d &dEp)
 
RowVector6d dDeltaEpvneg_dE (const Marmot::Vector6d &dEp, const Matrix6d &CelInv, const Matrix6d &Cep)
 

Function Documentation

◆ dStressMean_dStress()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStressMean_dStress ( )

Computes the derivative \( \frac{d\, \sigma_m}{d\, \boldsymbol{\sigma}} \) of the mean stress \( \sigma_m \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)

◆ dRho_dStress()

template<typename T >
Eigen::Matrix< T, 6, 1 > Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dRho_dStress ( rho,
const Eigen::Matrix< T, 6, 1 > &  stress 
)

Computes the derivative \( \frac{d\, \rho}{d\, \boldsymbol{\sigma}}\) of the haigh westergaard coordinate \( \rho \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)

◆ dTheta_dStress()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dStress ( double  theta,
const Marmot::Vector6d stress 
)

Computes the derivative \( \frac{d\, \theta}{d\, \boldsymbol{\sigma}}\) of the haigh westergaard coordinate \( \theta \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)

◆ dTheta_dJ2()

double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dJ2 ( const Marmot::Vector6d stress)

Computes the derivative \( \frac{d\, \theta}{d\, J_2}\) of the haigh westergaard coordinate \( \theta \) with respect to the second deviatoric invariant \( J_2 \)

◆ dTheta_dJ3()

double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dTheta_dJ3 ( const Marmot::Vector6d stress)

Computes the derivative \( \frac{d\, \theta}{d\, J_3}\) of the haigh westergaard coordinate \( \theta \) with respect to the third deviatoric invariant \( J_3 \)

◆ dThetaStrain_dJ2Strain()

double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dJ2Strain ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, J^{(\varepsilon)}_2}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the second deviatoric invariant \( J^{(\varepsilon)}_2 \).

◆ dThetaStrain_dJ3Strain()

double Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dJ3Strain ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, J^{(\varepsilon)}_3}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the third deviatoric invariant \( J^{(\varepsilon)}_3 \).

◆ dJ2_dStress()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ2_dStress ( const Marmot::Vector6d stress)

Computes the derivative \( \frac{d\, J_2}{d\, \boldsymbol{\sigma}}\) of the second deviatoric invariant \( J_2 \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \).

◆ dJ3_dStress()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ3_dStress ( const Marmot::Vector6d stress)

Computes the derivative \( \frac{d\, J_3}{d\, \boldsymbol{\sigma}}\) of the third deviatoric invariant \( J_3 \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \).

◆ dJ2Strain_dStrain()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ2Strain_dStrain ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, J^{(\varepsilon)}_2}{d\, \boldsymbol{\sigma}}\) of the second deviatoric invariant \( J^{(\varepsilon)}_2 \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \).

◆ dJ3Strain_dStrain()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dJ3Strain_dStrain ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, J^{(\varepsilon)}_3}{d\, \boldsymbol{\sigma}}\) of the third deviatoric invariant \( J^{(\varepsilon)}_3 \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \).

◆ dThetaStrain_dStrain()

Vector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dThetaStrain_dStrain ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, \theta^{(\varepsilon)}}{d\, \boldsymbol{\varepsilon}}\) of the haigh westergaard coordinate \( \theta^{(\varepsilon)} \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)

◆ dStressPrincipals_dStress()

Matrix36 Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStressPrincipals_dStress ( const Marmot::Vector6d stress)

Computes the derivative \( \frac{d\, \sigma_I}{d\, \boldsymbol{\sigma}}\) of the principal stresses \( \sigma_I \) with respect to the voigt notated stress vector \( \boldsymbol{\sigma} \)

◆ dStrainVolumetricNegative_dStrainPrincipal()

Vector3d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dStrainVolumetricNegative_dStrainPrincipal ( const Marmot::Vector6d strain)

Computes the derivative \( \frac{d\, \varepsilon^{vol}_{\ominus}}{d\, \varepsilon_I}\) of the volumetric strains in compression \( \varepsilon^{vol}_{\ominus} \) with respect to the principal strains \( \varepsilon_I \)

◆ dEp_dE()

Matrix6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dEp_dE ( const Matrix6d CelInv,
const Matrix6d Cep 
)

Computes the derivative \( \frac{d\, \boldsymbol{\varepsilon}^{p}}{d\, \boldsymbol{\varepsilon}}\) of the voigt notated plastic strain vector \( \boldsymbol{\varepsilon}^{p} \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)

\[ \displaystyle \frac{d\, \boldsymbol{\varepsilon}^{p}}{d\, \boldsymbol{\varepsilon}} = \boldsymbol{I} - \mathbb{C}^{-1}\,\mathbb{C}^{(ep)} \]

using the elastic compliance tensor \( \mathbb{C}^{-1} \) and the elastoplastic stiffness tensor \( \mathbb{C}^{(ep)} \)

◆ dDeltaEpv_dE()

RowVector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dDeltaEpv_dE ( const Matrix6d CelInv,
const Matrix6d Cep 
)

Computes the derivative \( \frac{d\, \Delta\, \varepsilon^{p, vol}}{d\, \boldsymbol{\varepsilon}}\) of the volumetric plastic strain increment \( \Delta\, \varepsilon^{p, vol}\) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)

◆ dSortedStrainPrincipal_dStrain()

Matrix36 Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dSortedStrainPrincipal_dStrain ( const Marmot::Vector6d dEp)

Computes the derivative \( \frac{d\, \varepsilon_I}{d\, \boldsymbol{\varepsilon}}\) of the principal strains \( \varepsilon_I \) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)

◆ dDeltaEpvneg_dE()

RowVector6d Marmot::ContinuumMechanics::VoigtNotation::Derivatives::dDeltaEpvneg_dE ( const Marmot::Vector6d dEp,
const Matrix6d CelInv,
const Matrix6d Cep 
)

Computes the derivative \( \frac{d\, \Delta\, \varepsilon^{p, vol}_{\ominus}}{d\, \boldsymbol{\varepsilon}}\) of the volumetric plastic strain increment in compression \( \Delta\, \varepsilon^{p, vol}_{\ominus}\) with respect to the voigt notated strain vector \( \boldsymbol{\varepsilon} \)