Functions
Marmot::ContinuumMechanics::Elasticity::TransverseIsotropic Namespace Reference

Functions for the description of transversely isotropic elastic behavior. More...

Functions

Matrix6d complianceTensor (const double E1, const double E2, const double nu12, const double nu23, const double G12)
 
Matrix6d stiffnessTensor (const double E1, const double E2, const double nu12, const double nu23, const double G12)
 

Detailed Description

Functions for the description of transversely isotropic elastic behavior.

Function Documentation

◆ complianceTensor()

Matrix6d Marmot::ContinuumMechanics::Elasticity::TransverseIsotropic::complianceTensor ( const double  E1,
const double  E2,
const double  nu12,
const double  nu23,
const double  G12 
)

Computes the transversely isotropic compliance tensor:

\[ \displaystyle \mathbb{ C }^{-1} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{12}}{E_1} & \frac{-\nu_{12}}{E_1} & 0 & 0 & 0 \\ \frac{-\nu_{12}}{E_1} & \frac{1}{E_2} & \frac{-\nu_{23}}{E_2} & 0 & 0 & 0 \\ \frac{-\nu_{12}}{E_1} & \frac{-\nu_{12}}{E_2} & \frac{1}{E_2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{12}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{23}} \end{bmatrix} \]

The isotropic plane is defined with respect to the \( x_2 \) and \( x_3 \) axes of a local coordinate system. It is computed from the young's modulus \( E_1 \), the shear modulus \( G_{12} \) and poisson's ratio \( \nu_{12} \) effective out of the isotropic plane and the in - plane young's modulus \( E_2 \) and poisson's ratio \( \nu_{23} \).

The in - plane shear modulus \( G_{23} \) can be expressed by

\[ \displaystyle G_{23} = \frac{E_2}{2\,(1 + \nu_{23})} \]

◆ stiffnessTensor()

Matrix6d Marmot::ContinuumMechanics::Elasticity::TransverseIsotropic::stiffnessTensor ( const double  E1,
const double  E2,
const double  nu12,
const double  nu23,
const double  G12 
)

Computes the transversely isotropic stiffness tensor \( \mathbb{C} \) as inverse of the transversely isotropic compliance tensor \( \mathbb{C}^{-1} \).