Functions
Marmot::ContinuumMechanics::Elasticity::Orthotropic Namespace Reference

Functions for the description of orthotropic elastic behavior. More...

Functions

Matrix6d complianceTensor (const double E1, const double E2, const double E3, const double nu12, const double nu23, const double nu13, const double G12, const double G23, const double G31)
 
Matrix6d stiffnessTensor (const double E1, const double E2, const double E3, const double nu12, const double nu23, const double nu13, const double G12, const double G23, const double G31)
 

Detailed Description

Functions for the description of orthotropic elastic behavior.

Function Documentation

◆ complianceTensor()

Matrix6d Marmot::ContinuumMechanics::Elasticity::Orthotropic::complianceTensor ( const double  E1,
const double  E2,
const double  E3,
const double  nu12,
const double  nu23,
const double  nu13,
const double  G12,
const double  G23,
const double  G31 
)

Computes the orthotropic compliance tensor defined in the principal directions of the material \( x_1 \), \( x_2 \) and \( x_3 \) :

\[ \displaystyle \mathbb{ C }^{-1} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{12}}{E_2} & \frac{-\nu_{13}}{E_3} & 0 & 0 & 0 \\ \frac{-\nu_{12}}{E_2} & \frac{1}{E_2} & \frac{-\nu_{23}}{E_3} & 0 & 0 & 0 \\ \frac{-\nu_{13}}{E_3} & \frac{-\nu_{23}}{E_3} & \frac{1}{E_3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{23}} \end{bmatrix} \]

from the following independent parameters:

Parameter Description
\( E_1 \) Young's modulus effective in \( x_1 \) - direction
\( E_2 \) Young's modulus effective in \( x_2 \) - direction
\( E_3 \) Young's modulus effective in \( x_3 \) - direction
\( \nu_{12} \) Poisson's ratio effective between \( x_1 \) and \( x_2 \) - direction
\( \nu_{13} \) Poisson's ratio effective between \( x_1 \) and \( x_3 \) - direction
\( \nu_{23} \) Poisson's ratio effective between \( x_2 \) and \( x_3 \) - direction
\( G_{12} \) Shear modulus effective between \( x_1 \) and \( x_2 \) - direction
\( G_{13} \) Shear modulus effective between \( x_1 \) and \( x_3 \) - direction
\( G_{23} \) Shear modulus effective between \( x_2 \) and \( x_3 \) - direction

◆ stiffnessTensor()

Matrix6d Marmot::ContinuumMechanics::Elasticity::Orthotropic::stiffnessTensor ( const double  E1,
const double  E2,
const double  E3,
const double  nu12,
const double  nu23,
const double  nu13,
const double  G12,
const double  G23,
const double  G31 
)

Computes the orthotropic stiffness tensor \( \mathbb{C} \) as inverse of the orthotropic compliance tensor \( \mathbb{C}^{-1} \).