Functions for the description of isotropic elastic behavior. More...
Functions | |
constexpr double | E (const double K, const double G) |
constexpr double | nu (const double K, const double G) |
constexpr double | shearModulus (const double E, const double nu) |
constexpr double | lameParameter (const double E, const double nu) |
Matrix6d | complianceTensor (const double E, const double nu) |
Matrix6d | stiffnessTensor (const double E, const double nu) |
Matrix6d | stiffnessTensorKG (const double K, const double G) |
Functions for the description of isotropic elastic behavior.
|
constexpr |
Computes the isotropic young's modulus E from the compression modulus K and shear modulus G
\[ \displaystyle E = \frac{9\,K\,G}{3\,K + G)} \]
|
constexpr |
Computes the isotropic poisson's ratio \( \nu \) from the compression modulus K and shear modulus G
\[ \displaystyle \nu = \frac{3\,K - 2\,G}{6\,K + 2\,G)} \]
|
constexpr |
Computes the isotropic shear modulus G from the young's modulus E and poisson's ratio \( \nu \).
\[ \displaystyle G = \frac{E}{2\,(1 + \nu)} \]
|
constexpr |
Computes the isotropic lame parameter \( \lambda \) from the young's modulus E and poisson's ratio \( \nu \)
\[ \displaystyle \lambda = \frac{E\,\nu}{(1 + \nu)(1 - 2\,\nu)} \]
Matrix6d Marmot::ContinuumMechanics::Elasticity::Isotropic::complianceTensor | ( | const double | E, |
const double | nu | ||
) |
Computes the isotropic compliance tensor:
\[ \displaystyle \mathbb{ C }^{-1} = \begin{bmatrix} \frac{1}{E} & \frac{-\nu}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \\ \frac{-\nu}{E} & \frac{1}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \\ \frac{-\nu}{E} & \frac{-\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \]
from the young's modulus E and the poisson's ratio \( \nu \) with
\[ \displaystyle G = \frac{E}{2\,(1 + \nu)} \]
Matrix6d Marmot::ContinuumMechanics::Elasticity::Isotropic::stiffnessTensor | ( | const double | E, |
const double | nu | ||
) |
Computes the isotropic stiffness tensor:
\[ \displaystyle \mathbb{ C } = \frac{E\,(1-\nu)}{(1+\nu)(1-2\,\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 0 & 0 \\ \frac{\nu}{1-\nu} & 1 & \frac{\nu}{1-\nu} & 0 & 0 & 0 \\ \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\,\nu}{2\,(1-\nu)} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\,\nu}{2\,(1-\nu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\,\nu}{2\,(1-\nu)} \end{bmatrix} \]
from the young's modulus E and the poisson's ratio \( \nu \).
Matrix6d Marmot::ContinuumMechanics::Elasticity::Isotropic::stiffnessTensorKG | ( | const double | K, |
const double | G | ||
) |
Computes the isotropic stiffness tensor \mathbb{ C } from the bulk modulus K and the shear modulus G.