Implementation of Duvaut-Lions viscosity for a material with nMatTangentSize internal degrees of freedom. More...
#include <DuvautLionsViscosity.h>
Public Types | |
typedef Eigen::Matrix< double, nMatTangentSize, nMatTangentSize > | TangentSizedMatrix |
Public Member Functions | |
DuvautLionsViscosity (double viscosity) | |
double | applyViscosityOnStateVar (double stateVarTrial, double StateVarInf, double dT) |
Marmot::Vector6d | applyViscosityOnStress (const Marmot::Vector6d &trialStress, const Marmot::Vector6d &stressInf, double dT) |
TangentSizedMatrix | applyViscosityOnMatTangent (const TangentSizedMatrix &matTangentInv, double dT) |
Private Attributes | |
const double | viscosity |
Implementation of Duvaut-Lions viscosity for a material with nMatTangentSize internal degrees of freedom.
typedef Eigen::Matrix< double, nMatTangentSize, nMatTangentSize > Marmot::ContinuumMechanics::CommonConstitutiveModels::DuvautLionsViscosity< nMatTangentSize >::TangentSizedMatrix |
Marmot::ContinuumMechanics::CommonConstitutiveModels::DuvautLionsViscosity< s >::DuvautLionsViscosity | ( | double | viscosity | ) |
double Marmot::ContinuumMechanics::CommonConstitutiveModels::DuvautLionsViscosity< s >::applyViscosityOnStateVar | ( | double | stateVarTrial, |
double | StateVarInf, | ||
double | dT | ||
) |
Apply viscosity on a scalar internal variable depending on the extremal solutions for t=0 (trialState) and t= \(\infty\), and timestep dt
Marmot::Vector6d Marmot::ContinuumMechanics::CommonConstitutiveModels::DuvautLionsViscosity< s >::applyViscosityOnStress | ( | const Marmot::Vector6d & | trialStress, |
const Marmot::Vector6d & | stressInf, | ||
double | dT | ||
) |
Apply viscosity on voigt sized rank two tensor depending on the extremal solutions for t=0 (trialState) and t= \(\infty\), and timestep dt
DuvautLionsViscosity< s >::TangentSizedMatrix Marmot::ContinuumMechanics::CommonConstitutiveModels::DuvautLionsViscosity< s >::applyViscosityOnMatTangent | ( | const TangentSizedMatrix & | matTangentInv, |
double | dT | ||
) |
Apply viscosity on the inverse (algorithmic) material tangent depending on the extremal solutions for t=0 (trialState) and t= \(\infty\), and timestep dt
|
private |