Compressible Neo Hooke model ============================ Theory ------ Hyperelastic materials are a class of constitutive models used to describe the elastic behavior of solids. They postulate a strain-energy density function :math:`\Psi` from which stresses are obtained by differentiation with respect to appropriate strain measures. In finite strains we take :math:`\Psi=\Psi(\boldsymbol C)`, where the deformation gradient is :math:`\boldsymbol F`, the right Cauchy–Green tensor is :math:`\boldsymbol C=\boldsymbol F^{\mathsf T}\boldsymbol F`, and the Jacobian is :math:`J=\det\boldsymbol F`. The first invariant is :math:`I_1=\operatorname{tr}\boldsymbol C`. The model implemented here is a compressible Neo-Hookean material with the Pence–Gou potential (variant B). An isochoric–volumetric split is defined by .. math:: \Psi(\boldsymbol C) = \Psi_{\rm d}(I_1,J) + \Psi_{\rm h}(J) = \frac{G}{2}\,\big(I_1\,J^{-2/3}-3\big) + \frac{K}{8}\,\big(J - J^{-1}\big)^2, where :math:`G` is the shear modulus and :math:`K` is the bulk modulus. The second Piola-Kirchhoff stress tensor follows from the potential as .. math:: \boldsymbol S = 2\,\frac{\partial \Psi}{\partial \boldsymbol C}. The Kirchhoff and Cauchy stress tensors are obtained by push-forward operations: .. math:: \boldsymbol{\tau} = \boldsymbol F\,\boldsymbol S\,\boldsymbol F^{\mathsf T}, .. math:: \boldsymbol{\sigma} = J^{-1}\,\boldsymbol{\tau}. Using the chain rule, the first derivative of :math:`\Psi` with respect to :math:`\boldsymbol C` is .. math:: \frac{\partial \Psi}{\partial \boldsymbol C} = \frac{\partial \Psi}{\partial J}\,\frac{\partial J}{\partial \boldsymbol C} + \frac{\partial \Psi}{\partial I_1}\,\frac{\partial I_1}{\partial \boldsymbol C} = \Big[ \frac{K}{4}\,(J - J^{-1})\!\left(1+\frac{1}{J^{2}}\right) - \frac{G}{3}\,I_1\,J^{-5/3} \Big]\, \frac{J}{2}\,\boldsymbol C^{-{\mathsf T}} + \frac{G}{2}\,J^{-2/3}\,\boldsymbol I. The resulting second Piola–Kirchhoff stress used in the implementation is .. math:: \boldsymbol S = G\,J^{-2/3}\Big(\boldsymbol I - \tfrac{1}{3}\,I_1\,\boldsymbol C^{-1}\Big) + \frac{K}{4}\,\big(J^{2}-J^{-2}\big)\,\boldsymbol C^{-1}, where :math:`I_1 = \operatorname{tr}\boldsymbol C`. The resulting Kirchhoff stress, after the push-forward operation :math:`\boldsymbol{\tau} = \boldsymbol F\,\boldsymbol S\,\boldsymbol F^{\mathsf T}`, is: .. math:: \boldsymbol{\tau} = G\,J^{-2/3}\Big(\boldsymbol{b} - \tfrac{1}{3}\,\operatorname{tr}(\boldsymbol{b})\,\boldsymbol{I}\Big) + \frac{K}{4}\,\big(J^{2}-J^{-2}\big)\,\boldsymbol{I}, where :math:`\boldsymbol{b} = \boldsymbol F\,\boldsymbol F^{\mathsf T}` is the left Cauchy-Green tensor. The consistent tangent with respect to the deformation gradient :math:`\frac{\partial\boldsymbol{\tau}(\boldsymbol{S}(\boldsymbol{C}(\boldsymbol{F})), \boldsymbol{F})}{\partial\boldsymbol{F}}` is computed via the chain rule as: .. math:: \frac{\partial\boldsymbol{\tau}}{\partial\boldsymbol{F}} = 2\,\frac{\partial\boldsymbol{\tau}}{\partial\boldsymbol{S}} : \frac{\partial^{2}\Psi}{\partial\boldsymbol{C}\,\partial\boldsymbol{C}} : \frac{\partial\boldsymbol{C}}{\partial\boldsymbol{F}} + \frac{\partial}{\partial\boldsymbol{F}}\left(\boldsymbol{F}\,\boldsymbol{S}\,\boldsymbol{F}^{\mathsf{T}}\right). The individual derivatives are: .. math:: \frac{\partial\boldsymbol{\tau}}{\partial\boldsymbol{S}} = \boldsymbol{F}\otimes\boldsymbol{F}, .. math:: \frac{\partial^{2}\Psi}{\partial \boldsymbol C\,\partial \boldsymbol C} = \frac{\partial^{2}\Psi}{\partial J^{2}}\, \frac{\partial J}{\partial \boldsymbol C}\otimes\frac{\partial J}{\partial \boldsymbol C} + \frac{\partial \Psi}{\partial J}\, \frac{\partial^{2} J}{\partial \boldsymbol C\,\partial \boldsymbol C} + \frac{\partial^{2}\Psi}{\partial J\,\partial I_1} \left( \frac{\partial J}{\partial \boldsymbol C}\otimes\frac{\partial I_1}{\partial \boldsymbol C} + \frac{\partial I_1}{\partial \boldsymbol C}\otimes\frac{\partial J}{\partial \boldsymbol C} \right), .. math:: \frac{\partial\boldsymbol{C}}{\partial\boldsymbol{F}} = \boldsymbol{F}^{\mathsf{T}}\otimes\boldsymbol{I} + \boldsymbol{I}\otimes\boldsymbol{F}^{\mathsf{T}}, .. math:: \frac{\partial}{\partial\boldsymbol{F}}\left(\boldsymbol{F}\,\boldsymbol{S}\,\boldsymbol{F}^{\mathsf{T}}\right) = \boldsymbol{I}\otimes(\boldsymbol{S}\boldsymbol{F})^{\mathsf{T}} + \boldsymbol{S}\boldsymbol{F}\otimes\boldsymbol{I}. For infinitesimal strains, this model reduces to linear isotropic elasticity. Implementation -------------- .. doxygenclass:: Marmot::Materials::CompressibleNeoHooke :allow-dot-graphs: