Von Mises model (Automatic Differentiation) =========================================== An automatic differentiation implementation of classical J2 plasticity with isotropic hardening. .. list-table:: :header-rows: 1 :align: left * - **Index** - **Model Parameter** - **Description** * - 0 - :math:`E` - Young’s modulus * - 1 - :math:`\nu` - Poisson’s ratio * - 2 - :math:`f_\mathrm{y}^{0}` - Initial yield stress * - 3 - :math:`H_\mathrm{iso,lin}` - First hardening parameter [#f1]_ * - 4 - :math:`\Delta f_\mathrm{y}^{0,\infty}` - Second hardening parameter [#f1]_ * - 5 - :math:`\delta` - Third hardening parameter [#f1]_ .. list-table:: :header-rows: 1 :align: left * - **State Variable** - **Name** - **Description** * - :math:`\kappa` - ``kappa`` - Hardening variable [#f1]_ .. [#f1] see :ref:`vonMisesModel_hardening`. Theory ------ See :ref:`vonMisesModel`. Implementation -------------- Implementation follows the :ref:`vonMisesModel`, however, automatic differentiation is used to compute the consistent algorithmic tangent operator. .. doxygenclass:: Marmot::Materials::ADVonMises :allow-dot-graphs: