Linear Elastic model (Automatic Differentiation) ================================================ This material is intended for demonstration purposes, to illustrate how to use the capabilities of the AD Material. Theory ------ The constitutive law is given in total form as .. math:: \sig = \Cel : \eps relating the nominal stress tensor :math:`\sig` to the linearized strain tensor :math:`\eps` with the fourth order stiffness tensor :math:`\Cel`. For the given definitions it is important to note, that the Voigt notation is used. The stiffness tensor can be specified for isotropic material behavior as follows: Isotropic Behavior .................. Number of independent material parameters: 2 .. math:: \Cel^{-1} = \begin{bmatrix} \frac{1}{E} & \frac{-\nu}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \\ \frac{-\nu}{E} & \frac{1}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \\ \frac{-\nu}{E} & \frac{-\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} with .. math:: \displaystyle G = \frac{E}{2\,(1 + \nu)} Implementation -------------- .. doxygenclass:: Marmot::Materials::ADLinearElastic :allow-dot-graphs: